PacketVideo Confidential

	Title
	TMS Technical Specification
	CM ID
	Version
	Release Date

	Author(s): TMS core
	PacketVideo
	TMS Technical Specification
	5.1.8
	November 2009

[image: image4.png]

Page 1 of 19
[image: image4.png]

PacketVideo Confidential

	Title
	TMS Technical Specification
	CM ID
	Version
	Release Date

	Author(s): TMS core
	PacketVideo
	TMS Technical Specification
	5.1.8
	November 2009

Page 2 of 19

TwonkyMedia Server

View Configuration Update
Revision History

	Version
	Date
	Author
	Modifications

	5.1.9
	November 2009
	Christian Gran
	Updated view definitions

Abbreviations

	DLNA
	Digital Living Network Alliance

	UPnP
	Universal Plug and Play

	MIME type
	Multipurpose Internet Mail Extensions: a two-part identifier for file formats on the internet.

	HTTP
	Hypertext Transfer Protocol

	PV
	PacketVideo

	APP
	Application

	DMC
	Digital Media Controller

	DMS
	Digital Media Server

	DMR
	Digital Media Renderer

	DMP
	Digital Media Player

	TMS
	TwonkyMedia Server

	DLNA-APP
	Application

References

	DLNA_Guideline-March.pdf
	

	Media Formats
	http://www.dlna.org/industry/why_dlna/key_components/media_format/

View Configuration

The navigation tree that TMS provides is configured by a number of XML documents located in the folder resources/views.

There is one master file “view-definitions.xml”, which builds a complete master navigation tree. Based on this master view TMS generates and maintains the navigation tree structures. The other files are filters of this master view, enabling the visibility of the different sub nodes of the master view. The master view is build by the server as the complete navigation tree (based on view-definitions.xml) and the views than limit the visibility of different subnodes of this master view for the different clients.

The following chapters describe the master view file, and give some example on how to add an own subtree.

1.1.1 Navigation Tree

The master view description file “view-definitions.xml” is the base of the whole navigation tree. The filters are called views, e.g. simpleview, advancedview or ipodview.

A node in a view consists of 0 or more subnodes. A node is either a container or an item. Containers are used to span the tree structure; while items are the leaves of the navigation tree referring to media. Subnodes are always sorted due to the master view description file. Direct subnodes are always containers first, followed by items.

[image: image1]
1.1.2 Overview on Master View Configuration

This section provides a brief overview on the capabilities of the view-based navigation tree configuration and explains how the master view XML document is structured.

1.1.2.1 Features and capabilities

The features and capabilities of the view based navigation tree configuration are:

· Almost all database properties can be used to define a view

· TMS supports any number of simultaneous view filters

· No database rebuilds are needed when switching views

· Views/Filters can be assigned on a per client-type basis

1.1.3 Basic functionality

On startup TwonkyMedia server searches the folder resources/views for files with the extension view.xml. Each of these files can define a filter on the master view. The file view-definitions.xml is mandatory and needs to reside in this folder as well!
All available views are listed in the drop down box on the First Steps configuration page of TMS.

1.1.4 Assigning a view to clients

Views can be assigned to classes of clients in the client adaptation layer of TMS.

To assign a view to a certain class or type of client you need to edit the file resources/clients.db. Search for the section that matches your client and add the line “DV:<view name>” to that section.

For example: To assign the view simpledefault to the client “Freecom MusicPal” search for the appropriate section and add the DV switch. The resulting section would look like this:

NA:Freecom MusicPal

DD:MusicPal

AV:M

DB:FIX

DV:simpledefault

This will permanently assign the view simpledefault to all clients that are detected as “Freecom MusicPal”, regardless of the view that is selected on the First Steps of the TwonkyMedia server configuration page.

1.1.5 Structure of the “view-definitions.xml” file

<view name='base' path='view-definitions' >

<navtree>

<container> … </container>

</navtree>

</view>
The basic structure of the view-definitions.xml file is:

<view>

The view node is the root node of this document.

<navtree>

The navtree node encloses the actual navigation tree setup. It resembles the root container (id=0) of the navigation tree.

<container>

The container nodes are used to build the structure of the navigation tree. Each container node will result in one ore more folders in the navigation tree.

There are two types of container nodes:

1. Nodes using the name attribute: These nodes are simply used to build the structure of the tree. Each of these nodes resembles exactly one folder in the navigation tree.

2. Nodes using the buildon attribute: These nodes resemble a list of folders in the navigation tree. These folders are created based upon the database property specified in the buildon attribute.

A more detailed description of the nodes and the available properties follows in the next sections.

The <view> node

The <view> node is the root node of the view.xml document. It has two mandatory attributes and should contain only the <navtree> subnode.

Supported attributes of the view node are:

	Attribute
	Supported values Data type
	Description

	name
	String
	Symbolic name of the view, must be unique.

	Path
	String
	Folder name that TwonkyMedia uses to store the view data.

1.1.5.1 The <navtree> node

The <navtree> node resembles the root container of the navigation tree. With the attribute sortcriteria the default sort order of the items on the top level of the navigation tree can be defined. This allows, together with the attribute upnp:originalTrackNumber of the container nodes, to define any order for the containers on the top level. (See also the <container> section.)

	Attribute
	Supported values Data type
	Description

	sortcriteria
	String, Optional
	Used to define the default sort order for the top level of the navigation tree. The syntax follows the UPnP conventions:

+propertyname use this property to sort ascending

-propertyname use this property to sort descending

(If a client adds an own sort order string to its requests, then this is used.)

1.1.5.2 The <container> nodes

The <container> node can be used in two different ways:

Using <container> to specify tree structure

If the name attribute is present in the container node, a single folder will be created based upon this node. This can be used to build the basic navigation hierarchy or to create simple containers that contain all items of a certain upnp class.

	Attribute
	Supported values Data type
	Description

	name
	String
	Name of the folder that is created based upon this node. This name is looked up in the strings-nn.txt files for localization.

	sortcriteria
	Optional, String
	Used to define the default sort order for the children of this container. The syntax follows the UPnP conventions:

+propertyname use this property to sort ascending

-propertyname use this property to sort descending

(If a client adds an own sort order string to its requests, then this is used.)

	Id
	Optional, String
	A fixed id string that will be mapped to the folder resulting from this container node. This allows certain clients to directly access these folders. See appendix for a list of predefined id strings.
The Id is very important as it is used in the filter views to refer to this complete subtree!
Ids can only have the values as listed in the appendix. If own subtrees shalls be defined the groupid is to be used.

	Groupid
	Optional, String
	A container node can only have either an ID or a Groupid property. The Ids are predefined and used to enable clients to navigate via shortcuts to specific foldrs. The Groupid is a string that can be freely assigned/used.

	Class
	String
	The upnp class that will be used for the folder created based upon this container node.

	createClass
	Comma separated list
	List of the upnp classes of the items that are allowed below this container.

	upnp:originalTrackNumber
	Optional, Numeric
	Allows to add an artificial track number to the container. This can be used together with the sortcriteria attribute to create a custom sort order.

Example:

<container

name='music'

id='music'

sortcriteria='+dc:title'

upnp:originalTrackNumber='1'

class='object.container'

createClass='object.item.audioItem.musicTrack'>

</container>
· This line will create a folder called “music” with the id “music”.

· The items/folders inside this folder will be sorted alphabetically in ascending order.

· The music folder itself will have the track number 1. If the parent container uses the default sortcriteria “+upnp:originalTrackNumber” the music folder will be the first one in the list.

· The upnp:class of the music folder will be “object.container”

· Only items with the upnp:class “object.item.audioItem.musicTrack” will be located in the music folder

· Since the container node has no children, all items matching the createClass attribute will be located directly in this folder. Which means: All the music tracks are located directly in the music folder.

1.1.5.2.1 Filtering

With the filteron property, items that are allowed within a named container can be restricted. In the example above filteron='pv:highrated' would limit the music tracks in the music folder to those that have a value in the database field pv:highrated.
Using <container> to specify generated sub-trees

If the buildon attribute is used in a container node, TwonkyMedia will dynamically generate a list of folders based upon the specified database property.

The supported attributes are:

	Attribute
	Supported values Data type
	Description

	Buildon
	String
	Name of the database property that is used to create a list of folders.

	Sortcriteria
	Optional, String
	Used to define the default sort order for the children of this container. The syntax follows the UPnP conventions:

+propertyname use this property to sort ascending

-propertyname use this property to sort descending

(If a client adds an own sort order string to its requests, then this is used.)

	id
	Optional, String
	A fixed id string that will be mapped to the folder resulting from this container node. This allows certain clients to directly access certain folders. See appendix for a list of predefined id strings.

	class
	String
	The upnp class that will be used for the folder created based upon this container node.

	createClass
	Comma separated list
	List of the upnp classes of the items that are allowed below this container.

	upnp:originalTrackNumber
	Optional, Numeric
	Allows to add an artificial track number to the container. This can be used together with the sortcriteria attribute to create a custom sort order.

	albumart
	Optional, Boolean
	If the album art attribute is set to ‘1’, then TwonkyMedia will use the albumart of the first item added to the container as albumart for the container itself.

	restricted
	Optional, Boolean
	Allows setting of the restricted flag for the folder and all items below. If this is not set the value from the parent is used. If the whole view has now restricted flags set, the internal default restricted=’1’ is used.

<container

buildon='upnp:album'

albumart='1'

sortcriteria='+upnp:originalTrackNumber' createClass='object.item.audioItem.musicTrack' class='object.container.album.musicAlbum'

/>

This will result in a list of folders. The list will be created based on the database property ‘upnp:album’. This means for each album found in the database a new folder will be created. TwonkyMedia then stores the items according to their album property in these folders.

1.1.5.3 Alpha-Grouping

If the resulting list of folders is too long, you can use the alpha-grouping feature to group these folders by their first character into a list of additional subfolders.

A navigation tree using alpha-grouping would look like this:

Music

Genres

ABC

Blues

Country

DEF

Folk

GHI

Independent

To enable alpha-grouping append a single digit in square brackets after the database property name in the buildon attribute.

The above example uses buildon=’upnp:genre[3]’

The number defines the size of the groups.

For example buildon=’upnp:genre[5]’ would result in this tree:

Music

Genres

ABCDE

Blues

Country

FGHIJ

Folk

Independent

1.1.6 Example on how to extend the views

In this example we extend the simple view by an own Genre, that is alpha indexed by 3 letters. Two files need to be changed for this, simple.view.xml and view-definitions.xlml.

In the simple.view.xml file the new folder needs to be referenced like this:

<view name='simpledefault' path='simple.view'>

<navtree>

<container id='music'>

<link id='music/all' />

<link groupid='music/mygenre' />

….

</navtree>

</view>

The groupid can be used to add own subtrees. Of course it is also possible to just modify one of the pre-defined trees, like music/all as well – but if a new tree shall be added the groupid must be used.

Now we also need to add the definition of this new tree to the view-definitions.xml file:

<view name='base' path='view-definitions'>

<navtree sortcriteria='+upnp:originalTrackNumber'>

<container name='music' id='music' upnp:originalTrackNumber='1' … >

 <container name='mygenre' groupid='music/mygenre' class='object.container'
 createClass='object.item.audioItem.musicTrack'>

 <container buildon='upnp:genre[3]' class='object.container.genre.musicGenre'
 createClass='object.item.audioItem.musicTrack' >

 <container buildon='upnp:album' albumart='1'
 sortcriteria='+pv:numberOfThisDisc,+upnp:originalTrackNumber'
 createClass='object.item.audioItem.musicTrack'
 class='object.container.album.musicAlbum' />

 </container>

 </container>

...

</navtree>

</view>

1.1.7 Database properties

pv:avKeywords
 Keywords

upnp:class
 UpnP class of the item

dc:creator
 Primary content creator or owner of the object

dc:date
 The date of the item YYYY-MM-DD

dc:description
 The description of the item

dc:title
 Main title of the item

pv:orientation
 Picture orientation

bitrate
 Bitrate in bytes/seconds of the encoding of the resource

bitrateConstant
 Flag to indicate constant or variable Bitrate

bitsPerSample
 Encoding characteristic of the resource

chapterDuration
 Chapter duration in ms

chapterFile
 Filename of a DVD chapter (.vob)

chapterNumber
 Chapter number

chapterOffset
 Byte offset at the vob

colorDepth
 Encoding characteristic of the resource.

duration
 Time duration of the playback of the resource

pv:extension
 File/url extension

mimeType
 The mime type of the item (if not auto detected)

nrAudioChannels
 Number of audio channels

resolution
 The resolution of the item (width x height)

sampleFrequency
 Sample frequency of the audio in HZ.

size
 Size in bytes of the resource

subtitle
 If subtitle file (.srt/.sub/.txt/.smi/.ssa/.psb/.ass) exists for this movie (same filename as movie file except extension) set this to the filename

pv:addedLast60
 Set to 1, if added in last 60 days - auto calculated property!

pv:addedTime

 Timestamp when the item was added (unix time)

upnp:albumArtURI
 Object ID where the albumart is related - for containers only!

pv:albumArtLength
 Length of album art - if there / for pictures used for thumbnails!

pv:albumArtOffset
 Offset to album art - if there / for pictures used for thumbnails!

pv:albumArtResolution
 XxY resolution of the albumArt in pixels (typically image item or video item).

pv:aspectRatio
 The aspect ratio of the item

pv:compilation
 Set to 1 if we have a compilation item

pv:sort
 Default sort criteria for container

pv:highrated
 Set if rating >4 - auto calculated property!

pv:lastPlayedTime
 YYYY-MM-DD

pv:lastUpdated
 The unix time when the db entry of the item was last updated

pv:modificationTime
 The the modification time of the item (on disc) (Unix time)

pv:rating
 Value between 1 (don’t like) to 5 (like)

pv:playcount
 Number of times an item was played

upnp:actor
 Name of an actor appearing in a video item

upnp:albumArtist
 Album Artist

upnp:album
 Title of the album to which the item belongs.

upnp:artist
 Name of an artist - always use with role=Performer here

upnp:author
 Name of an author - always use role=Composer here

upnp:genre
 Name of the genre to which an object belongs

upnp:originalTrackNumber
 Original track number on an audio CD or other medium

1.1.8 Persistent IDs as used in views

music

music/all

music/playlists

music/genre

music/folders

music/artistindex

music/artistalbum

music/genreartistalbum

music/rating

music/artists

music/albums

music/composers

picture

picture/all

picture/playlists

picture/folders

picture/date

picture/keywords

picture/year

picture/albums

picture/rating

video

video/all

video/playlists

video/folders

video/genre

video/year

video/date

video/rating

1.1.9 UPnP Classes as used in views

1.1.9.1 createClass

For the createClass attribute these values are supported:

Videos: object.item.videoItem.movie

Online videos: object.item.videoItem.online.movie

Pictures: object.item.imageItem.photo

Online pictures: object.item.imageItem.online.photo

Audio: object.item.audioItem.musicTrack

Online audio: object.item.audioItem.online.musicTrack

1.1.9.2 class

For simple named containers: object.container

Folders that will hold pictures: object.container.album.photoAlbum

Use this when building a folder based tree: object.container.storageFolder

Configuring Views per device

TMS 5.x allows configuring a system-wide navigation tree through the web frontend:

First steps -> Navigation Tree -> pulldown menu

[image: image2.png]» First stens
Sharing

b ledia Receivers
» Network

» Media Feeds

» Maintenance

Jpoo
£

»
» E

© Padatvides
Corporation
2003,2008),
Al ights reserved

Language:

English v,

Language inwhich configuration pages and the navigation tree on the media recsive

Server name:

Narme of the media server as displayed

by media receivers. By means of e macro ¢

Navigation Tree:

Advanted defaull navigation | v

There is the chaice of selecting diferen
provides a better structured tree which ¢

iPocklike
Simple default navigation

For small ¢
terns.

This system-wide navigation tree is used for the media browser and all connected clients. It can be overridden for specific client devices through the client adaptation layer (clients.db). The following example shows an entry in the clients.db file that would be used to specify a navigation tree setting. DV means “default view”

DV:<name of the navigation tree>

Navigation trees are defined by XML-descriptions and could be customized by added or modifying these descriptions. All XML files in the subfolder resources/views are used by the server. The following views are defined: simple advanced iPod-like

From TMS 5.1 on the system-wide navigation tree could be also applied to specific clients by adding a new column (similar to the system wide navigation tree setting) per client in the menu “Media Receivers”:

[image: image3.png]Generic Media Receiver v|[simple v

Buffalo LT-HIOLAN v|[iPosiike v

Packetvidea Player | Favanced v,

The system-wide navigation tree has lowest priority and can be overwritten through client adaptation, which can be overwritten with “Media Receiver” menu.

Changes made in “Media Receivers” menu are lost on “Reset list”.

Item

container

Copyright © 2009 by PacketVideo Corporation.

This document and the information contained herein is the confidential information of PacketVideo Corporation (PV) and is for the sole use of the intended recipient(s). If you are not the intended recipient, please contact PV at the address listed below and destroy all copies of this document. To the extent a nondisclosure agreement or other commercial agreement (Governing Agreement) is signed and in effect between PV (or an authorized PV licensee) and the intended recipient(s) of this document, the terms of such Governing Agreement will govern. If no Governing Agreement is in effect, then this document may not be used, reproduced or distributed without the prior written consent of PacketVideo Corporation, 10350 Science Center Drive, San Diego, CA 92121 USA. Email: legal@pv.com.
PacketVideo Confidential
 Confidential & Proprietary

_1252219618.bin

